游泳

国信证券基于ARFIMA的股市择时模型

2019-08-16 17:27:13来源:励志吧0次阅读

国信证券:基于ARFIMA的股市择时模型 2014-07-27 类别: 机构: 研究员:

[摘要]

分形差分噪声布朗运动是整数维的随机过程,分形布朗运动则是布朗运动向分形维的推广。布朗运动的离散形式是随机游走,但是分形布朗的离散形式是分形差分噪声(FractionalDifferencingNoise,FDN)。分形差分化试图将一个连续的分形布朗运动过程转变成为一个离散过程。整数差分仅仅是一个总的逼近方法,而且当这种简单的方法被强加在一个实际过程上时,常常导致过度差分问题,使原始数据中许多有用的数据特征被差分掉了,使得在参数估计和建模时产生较大偏差。

长期记忆过程越来越多的实证研究发现,股票收益率序列的各个观测值之间并非是不相关的,相反地,其相关性的一种表现方式就是收益率序列的自相关函数呈现出缓慢的衰减模式,比如以双曲线形式衰减到零,这种现象称之为长期记忆性。通俗地说,长期记忆性指高阶自相关。若一个时间序列具有长期记忆性,则说明该序列的观测值之间不是独立的,用历史事件可以长期持续影响未来。

若金融时间序列存在长期记忆性,那么现代投资理论、资产定价模型以及建立在有效市场理论假设下的经济理论将面临严重挑战。

ARFIMA模型的优势传统时间序列模型都是建立在相距较远的两个观测值之间完全独立或者几乎独立的假设基础上的,这些模型反映的时间序列的自相关函数呈指数率迅速衰减。

ARFIMA模型通过时间序列进行分形差分参数d反映了时间序列的长期记忆过程,而通过他的ARMA部分(n+s个参数)又反映了短期记忆过程,综合考虑了时间序列过程的长、短期记忆特性,因此,ARFIMA模型既优于ARMA模型,又优于FDN模型,迄今为止,它是分析时间序列长期记忆特性最有效的工具之一。

合肥癫痫病好的专科研究院
癫痫的病因有那些
去眼袋手术
分享到: